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Recent developments in solving the problem of the elastohydrodynamic collision 
between two solid elastic bodies involved elaborate numerical procedures in order to 
simultaneously account for the elastic deformation of the solid surfaces and viscous 
fluid pressure. This paper describes a simple analytical approximation based upon a 
Hertzian-like profile for the elastic deformation of the two solid elastic spheres. By 
introducing a scaling coefficient, a closed-form solution has been developed which is 
capable of predicting the evolution of the relative particle velocity, force and restitution 
coefficient to an accuracy that is comparable with the exact numerical solutions. 

1. Introduction 
The viscous force arising from the radial pressure flow of the interstitial fluid 

between two colliding solid particles is of particular relevance to powder dispersion, 
mixing, and aggregation. Historically, elastohydrodynamics has been concerned with 
the case of impacting lubricated bodies and has received considerable attention in 
tribology (e.g. Briscoe & McClune 1976; Safa & Gohar 1986; Larsson & Lundberg 
1994). Recently, researchers in the field of filtration, coagulation and adhesion have 
also examined the elastohydrodynamic collisions of spherical particles. For the case of 
a pendular liquid bridge between two rigid spheres, a solution based on the lubrication 
approximation for the viscous force was derived by Adams & Perchard (1 985). Their 
solution is similar to the asymptotic solution for a rigid sphere in a viscous fluid moving 
towards a rigid wall (Cox & Brenner 1967). However, for deformable solids, the 
viscous force is affected by the dynamic deformation of the solids. Therefore, it is 
necessary to account for the coupling between the equations of solid mechanics and 
fluid dynamics. 

Ennis et al. (1990) proposed a simplified model in which the rigid-sphere solution 
was employed and an arbitrary minimum separation distance was specified. This 
arbitrary separation distance was assumed to correspond to the surface roughness of 
granules. More rigorous studies of the elastohydrodynamic collision of two spheres 
that are surrounded by thin isoviscous liquid layers were made by Davis, Serayssol & 
Hinch (1986) and others (Serayssol & Davis 1986, Barnocky & Davis 1988a). 
However, they showed that analytical solutions for the dynamic deformation and 
viscous force are not available. The radial pressure of the interstitial fluid developed 
between the colliding particles may only be solved numerically. Recently, Wells (1993) 
proposed a more simplified model where the dynamic deformation of the spheres was 
assumed to be Hertzian-like. The results showed some agreement with the data of 
Davis et al. (1986), but it was still necessary to obtain the solution numerically. There 
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was also significant divergence from the exact solution due to Davis et al. (1986) for 
large Stokes numbers, as will be discussed later. 

The intention of the current paper is to present a simplified analytical model for the 
isoviscous elastohydrodynamic collision of deformable solid spheres. The trajectories 
and viscous fluid forces of the deformable particles are predicted and scaled to the 
accurate numerical results of Davis et al. (1986). The approach adopted is analogous 
to that of Wells (1993) in that a Hertzian-like profile for the elastic deformation of the 
solid spheres is employed. The development of a closed-form solution is important in 
the efficient implementation of simulation techniques involving many-body problems. 
For example, squeeze film interactions have been identified as being dominant in the 
flow of concentrated suspensions (Frankel & Acrivos 1967). In order to account for 
such hydrodynamic interactions a number of numerical procedures have been 
developed including Stokesian dynamics (Bossis & Brady 1989). The current 
approaches are limited to rigid-body interactions, but there is a growing interest in soft 
or deformable particles for which the elastohydrodynamic interactions become 
important. Another field of interest is granulation whereby agglomerates of particles 
having liquid bridges collide to form larger agglomerates (Ennis, Tardos & Pfeffer 
1991). Some progress has been made using the discrete element method to simulate this 
process (Lian, Thornton & Adams 1993; Thornton, Lian & Adams 1993). 

2. Theoretical considerations 
When two elastic spheres separated by a thin layer of liquid or a pendular liquid 

bridge collide with each other along the line-of-centres, a radial pressure is developed 
within the interstitial fluid. According to elasticity theory, if the radial pressure is 
denoted by p(r ) ,  the elastic deformation of the surfaces of the spheres, wi(r), is then 
given by (Davis et al. 1986) 

where K is the complete elliptic integral of the first kind, Ei and vi are the elastic 
properties of the spheres (i = 1 or 2) and the radial coordinates 5 and r are shown in 
figure I .  The elastic deformation, wi(r), is related to the separation distance between the 
spheres, h(r), by the following expression : 

where w, = wl(r) + w2(r) and the parameter S is the instantaneous separation distance 
at r = 0 between the two spheres in their undeformed state (see figure 1) and R* is the 
reduced radius expressed in terms of the radii of the two spheres (l/R* = l/R, + l/R2). 
The instantaneous value of S is described by the kinematic equations of relative motion 
which may be expressed as 

where v is the relative velocity of approach, E;v is the viscous force and m*(l/m* = 
l/m, + l/m2) is the reduced mass; the dot refers to differentiation with respect to time. 

In order to determine the dynamic normal deformation, the hydrodynamic pressure 
in the fluid needs to be specified. For the relative displacement of two spheres in close 
contact, according to the classical lubrication theory, the radial pressure distribution 
of a Newtonian fluid should satisfy the equation 

h(r) = S +  r2/2R* + w,, (2) 

(3) S = u,  v = E;v/m*, 

r h 3 ( r ) m  = 127 h(r) r dr, 
ar 0 

(4) 
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FIGURE 1. Schematic representation of the dynamic deformation of two elastic 
spheres separated by an interstitial fluid. 

where 7 is the fluid viscosity. From the radial pressure distribution, the viscous force 
may be derived as 

F, = lom 27cp(r) rdr. ( 5 )  

It may be seen that the elastic and hydrodynamic equations are fully coupled. For 
relatively hard spheres or large separation distances, when the elastic deformation is 
very small, the gap h(r) may be approximated as 

h(r) = S+r2/2R* (6)  
from which the viscous force may be obtained as 

Equation (7)  is the rigid-sphere solution derived by Adams & Perchard (1989,  which 
is the leading-order term that was obtained by Cox & Brenner (1967). However, for 
relatively soft spheres and small separation distances, the elastic deformation 
significantly modifies the viscous force as described in the introduction. Davis et al. 
(1986) showed that the coupled equations cannot be solved analytically. In an attempt 
to reduce the complexity of the numerical procedures required, Wells ( 1  993) assumed 
a Hertzian-like profile for the elastic deformation of the spheres as defined by the 
expressions 

where a(= a2 /R*)  is the deformation at the centreline and a is the radius of the 
Hertzian contact area. According to Wells (1993), pc is chosen to be O.la and p1 = 
1.05343a. He showed that the above approximation leads to a fourth-order system of 
ordinary differential equations which, unfortunately, still cannot be solved analytically. 
He also indicated that the approximation leads to an inconsistency in the pressure 
distributions for the elastic deformation and viscous fluid equations. However, he was 
able to demonstrate that the numerical solution was generally in good agreement with 
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that of Davis et al. (1986) except for large Stokes numbers as mentioned in the 
introductory section. 

3. Approximate analytical solution 
For the elastohydrodynamic collision of two elastic spheres along the line of their 

centres, Davis et al. (1986) have performed an exact numerical analysis. They found 
that during close approach, the spheres deform such that a central flattened region was 
developed, which we will approximate to a planar geometry. Subsequently, this will be 
referred to as the ‘inner region’ while that at greater values of the radial coordinate will 
be termed the ‘outer region’. Davis et al. (1986) found that as the gap between the 
surfaces decreased, the radius of the inner region increased. This radius reached a 
maximum value and then decreased as relaxation occurred and the spheres began to 
rebound. The planar profile developed by the hydrodynamic pressure in the inner 
region is quite similar in form to the Hertzian deformation for unlubricated solid 
sphere collisions when the pressure distribution is given by (see Johnson 1985) 

(9) p(r)  = p,( 1 - r2/a2)1/2 

and the elastic deformation force between the spheres, F,, is given by 

where E* is related to Young’s modulus (EJ ,  and the Poisson ratio (v i )  of the two 
spheres, 

1 1-v; 1-v; +-. - 
E* El E, 

In accordance with Hertzian theory, the elastic deformation of the inner region 
( r  < a) is expressed as 

a2 r2 
R* 2R* 

w,,, = 

and that outside ( r  > a) as 

If a Hertzian deformation is assumed, it follows that in the inner region the gap 
between the two surfaces may be derived by the substitution of equation (12) into (2); 
thus 

The separation distance defined by (14) is constant across the inner region. 

h,,, = S+a2/R* = S+a. (14) 

Further substitution of (14) into (4) yields the dynamic pressure in the inner region 

= C-3y(u-&)r2/h3, (15) 
where C is an integration constant. Integration of (1 5) leads to the following expression 
for the viscous force : 
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For the outer region, the elastic deformation given by (1 3 )  may be approximated by 
a truncated Taylor series given as 

This is quite similar in form to (8), the elastic deformation profile proposed by Wells 
(1993), if we let pe = 0 and p, = a. However, after substituting (17) into (2)  and (4), it 
is not possible to derive an analytical expression for the viscous force in the outer 
region. 

Both the Hertzian pressure distribution (equation (9)) and that computed by Davis 
et al. (1986) are parabolic. However, in the case of the former, the pressure is zero at 
r = a while, for the latter, the distribution extends to the outer region ( r  > a). 
Consequently, the Hertzian equation will underestimate the deformation in this region. 
The effect is relatively modest since the deformation is small compared both to that in 
the inner region and to the gap between the two surfaces in the outer region where the 
leading-order term is r2/2R*. Given that the geometry of the outer region has proved 
inaccessible by analytical means, the following simplification was introduced : 

w,,, z cka  = cka2/R*, (18) 

where ck would be equal to 0.5 in order to maintain the continuity of deformation at 
r = a (see (12) and (18)). However, here we employ ck (0 < ck < 0.5) as an adjustable 
scaling coefficient to be discussed later. In order to maintain the continuity in 
the geometry of the deformed surfaces, the inner region is extended such that r < a, 
(a ,< a,). Consequently, within the extended inner region 

and outside the extended inner region 

w,,~,  z cka = cka2/R*,  

a,  = a[2( 1 - Ck)]1’2,  

(20) 

(21) 

where the radius of the extended inner region a, is given by the relationship 

such that a ,  = a when ck = 0.5. 

inner region; thus 
Equation (16) now may be modified to account for the change in the radius of the 

R*a2 
( S  + . F,,, ,  = 2741 - c k )  R * a C - 6 ~ ( 1  -~~)~yR*(v-&)------- 

In the outer region, the separation distance is now expressed as 

hr,,l = S+cka+r2/2R*, (23) 

P,,~, = 3 7 ( ~  - ck k )  R*/h2. 

where the elastic deformation for r > a,  is only significant as r + a,. After substitution 
of (23) into (4), the viscous pressure in the outer region becomes 

(24) 
Comparing (15) and (24) with (9) it is found that the pressure distribution derived 

for the fluid is not consistent with the Hertzian distribution for the elastic deformation. 
In fact, by proposing an approximation for the elastic deformation of the spheres, it 
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is impossible to obtain a consistent dynamic pressure distribution which everywhere 
satisfies both the elasticity and lubrication equations. However, the consistency in the 
total force as a function of the relative approach and velocity may be satisfied. 
Integration of (24) leads to 

e,al = ~TC~R*(V-C,C~)R*/(S+~) .  (25) 

However, the continuity of the dynamic pressure defined by (15) and (24) requires that 
at r = a, 

3qR*(v - ck Ci) 67aR*(v - CE) 
(1 -4. (S+ a)3 

C =  + 
( S +  

Substitution of (26) into (22) leads to the following expression for the total viscous 
force : 

F, = &<a, +&,a1 

Using the relationship 4 = 4, a much simplified analytical solution for the 
elastohydrodynamic collision of spherical solids is thus obtained. 

4. Results and discussion 
Davis et al. (1986) presented some numerical results for the elastohydrodynamic 

collisions of two spherical solids covered by a thin layer of interstitial incompressible 
Newtonian fluid for which the pressure coefficient of the viscosity was zero. They 
introduced two dimensionless parameters. The first was the Stokes number which was 
defined as 

m*v, 
6nq( I?*)' ' 

St = 

where Y ,  is the initial relative velocity of the two spheres. The second was the elasticity 
parameter defined as 

471Y0(R*)3/2 

nE*SEi2 € =  

where So is the initial separation distance at r = 0 between the two colliding spheres in 
their undeformed state. Similar results have been computed with the present model. 
Starting from the initial values of a given separation distance and relative velocity, the 
initial force was obtained using (7). An implicit time-stepping scheme was then applied 
to compute the instantaneous values of the separation distance, relative velocity, 
viscous force and elastic deformation using (3), (10) and (27) respectively. 

In figure 2, the evolution of the relative particle velocity predicted by the present 
analytical model is compared with the accurate numerical solution of Davis et al. 
(1986) (referred to below as DSH) for the case of E = 0.01 with St = 5. The 
predictions given by Wells (1992) are also plotted. It can be seen that compared with 
DSH, when the scaling coefficient ck is set to 0.5, the present analytical model predicts 
an under-damped relative velocity, which is in contrast to the over-damped relative 
velocity predicted by Wells. This may suggest that, by setting ck = 0.5 ( w , , ~ ,  = 0 . 5 ~ ~ )  
for the present model, i.e. assuming that the elastic deformation in the outer region is 
half that at the centre, the overall elastic deformation is overestimated. By reducing the 
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FIGURE 2. Evolution of relative particle velocities predicted by the present model compared with the 
DSH (0) and Wells (0) solutions for an elasticity parameter B = 0.01 and Stokes number St = 5 and 
for ck values of 0.5 (---) and 0.25 (-). 

I 

Radius, r/(R*S0)1’2 

FIGURE 3. Deformed-gap profile of the sphere predicted by the present model (-) compared with 
the DSH solution (O), the corresponding Hertzian deformation (0)  and the undeformed profile 
(----) for St = 5 ,  B = 0.01 and uo t /S,  = 2. 

scaling coefficient to ck = 0.25 ( w , , , ~  = 0.25a), which is equivalent to reducing the 
elastic deformation to one quarter of that at the centre, figure 2 indicates that the 
predicted relative velocity leads to a slightly over-damped solution, but an improved 
fit to the accurate DSH solution. In fact, clc = 0.25 is the optimum value which 
minimizes the difference in the maximum rebound velocity between the present model 
and the DSH solution. it was found that any further reduction in the scaling coefficient 
results in an over-damped relative velocity. 

In figure 3 ,  the deformed profiles for different ck values are plotted and compared 
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Relative approach, S/So 
FIGURE 4. Dimensionless force as a function of the relative separation distance between the 
undeformed surfaces: a comparison of the present model with the DSH (0) solution for the case of 
St = 5 and E = 0.01 and for ck values of 0.5 (---) and 0.25 (-). 

with the exact DSH numerical solution for the case of St = 5 and c = 0.01. The 
equivalent Hertzian deformation and undeformed profile are also plotted. The 
deformation corresponds to uo t /S,  = 2 when the flattening reached the maximum and 
started to relax. It can be seen that for the Hertzian solution, the deformation in the 
inner region is overestimated, but that in the outer region agrees reasonably well with 
the DSH solution. When a constant deformation with a ck value of 0.5 is assumed 
across the outer region, the deformation in this region is also overestimated. However, 
when ck is set to zero, the deformation in the outer region is zero. Decreasing the value 
of ck from 0.5 to zero increases the radius of the inner region but decreases the 
deformation in the outer region. Clearly, adjustment of the value of ck will not lead to 
a pressure distribution equal to that computed by Davis et al. (1986). However, there 
should be an intermediate value of ck that results in similar values of the mean pressure 
obtained from the integral of the two pressure distributions. For the case of St = 5 and 
E = 0.01, the optimum ck value is found to be 0.25. With this value the inner region is 
slightly extended so that the deformation in the major proportion of the outer region 
is close to the DSH solution but a region of under-estimated deformation in the vicinity 
of r = a, is developed. Further calculations show that ck = 0.25 is the optimum value 
for all combinations of the Stokes number and the elasticity parameter as described 
below. 

In figure 4, the relative hydrodynamic viscous force, &IF, is plotted as a func- 
tion of the relative approach, S/Sg, for the case of E = 0.01 and St = 5, where 
F, (= 6nyu0(R*)2/S0) is the initial VISCOUS force at t = 0. It may be seen that, for 
ck = 0.25, there is a relatively good agreement between the DSH data and those cal- 
culated using the current model. However, after the point of maximum deformation, 
the force is overestimated by the current model. The discrepancy becomes quite sig- 
nificant when the force approaches zero. Unlike the DSH model, that described 
here allows the stored elastic energy to be fully recovered. This is demonstrated by the 
observation that both the viscous and elastic forces approach zero at the same point 
in the trajectory. While for the DSH model it was shown that as the spheres separate, a 
negative pressure at r = co is developed due to the inward flow of fluid in order to fill 
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FIGURE 5. Evolution of relative particle velocities predicted by the present model compared with 
the Wells solution (0) for E = 0.01 and St equal to (a) 2.5 and (b) 10 and for c, values of 0.5 (---) 
and 0.25 (-). 

10 

" 
10 103 105 107  109 

Reciprocal elasticity parameter, l/s 

FIGURE 6 .  The critical Stokes number of rebound as a function of the elasticity 
parameter predicted by the DSH model (0). 

the gap between the receding solid surfaces. As the out-of-balance hydrodynamic fluid 
force approaches zero, the negative pressure spreads inwards to balance the positive 
pressure in the inner region. The present model also predicts a negative pressure in the 
outer region if u < ck d. However, for the DSH model, there is a finite elastic deforma- 
tion when the total force is zero, indicating that the stored elastic energy is not fully 
released. A residual component of the stored elastic energy was also predicted by Davis 
et al. (1986) when the spheres undergo a damped oscillation and come to rest. 

Figure 5 shows the predicted evolution of the relative velocity compared with the 
Wells (1993) solution for other cases where E = 0.01 with St values of 2.5 and 10 
respectively. The figure also indicates, for all cases, that by reducing the scaling 
coefficient ck, the viscous damping increases. Davis et al. (1986) only provided values 
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FIGURE 7. Restitution coefficients predicted by the present model with c, = 0.25 (---) 
compared with those of DSH (0) and Wells (----). 

for the maximum rebound velocity. It is also found that the best fit to the maximum 
rebound velocity of the DSH solution is obtained by choosing ck = 0.25. 

Davis et al. (1986) reported some results for the restitution coefficients, defined as 
the ratio of the maximum rebound velocity to the initial impact velocity, for various 
elasticity parameters and Stokes numbers. It was shown that for a given elasticity 
parameter there is a critical Stokes number above which rebound occurs. The critical 
Stokes numbers predicted by the DSH solution for different elasticity parameters are 
plotted in figure 6. The relationship between the critical Stokes number and elasticity 
parameter may be described by the following semi-logarithmic function : 

(30) 
1 

St,  = 0.5181n- 
25e' 

which provides a mapping of the (St ,  €)-plane into stick and rebound regions. Barnocky 
& Davis (1988 b) developed a similar curve-fitting equation, but the associated 
parameters are a less precise description of the original data. 

In figure 7 the restitution coefficients predicted by the present model using a ck value 
of 0.25 are plotted in comparison with those reported by Davis et al. (1986) and Wells 
(1993). It may be seen that the restitution coefficients predicted by the present model 
agree well with the DSH model. However, the data calculated by Wells underestimates 
the rebound velocities for Stokes numbers less than 15, while for St > 15, the data are 
overestimated. 

Finally, in figures 8(a) and 8(b) ,  the evolution of the relative particle velocities and 
forces predicted by the present solution are compared with those calculated for rigid 
spheres. The present solution was evaluated for the cases when St = 5 and e = 0.001 
and 0.0001. It may be seen that for t: = 0.001, the rigid-sphere solution agrees well with 
the elastohydrodynamic solution at large separation distances but starts to diverge for 
small values. The force predicted by the rigid-sphere solution is generally much greater, 
resulting in an over-damped relative velocity. However, when the elasticity parameter 
is reduced to c = 0.0001, the difference between the two solutions is very small. Under 
these circumstances, the simple rigid-sphere solution obtained by Adams & Perchard 
(1985) applies. 
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FIGURE 8. Evolution of relative particle velocities and forces for St = 5 and (a) B = 0.001 and (b)  
e = 0.0001 : a comparison of the rigid sphere model (---) and the present elastohydrodynamic 
model (-). 

5. Conclusions 
An approximation to the elastohydrodynamic collision between two spherical solids 

with an interstitial incompressible Newtonian fluid of constant viscosity has been 
examined. It was shown that the simplified model proposed by Wells (1993) assumes 
a dynamic deformation that is similar to the truncated Taylor series for the Hertzian 
profile. This simplification leads to a set of fourth-order ordinary differential equations 
that can only be solved numerically. If the truncated Taylor series for the exact 
Hertzian deformation is assumed for the spheres, analytical expressions for the 
dynamic pressure of the fluid and the viscous force are still not attainable. 

An approximate model has been developed by assuming that the elastic deformation 
in the inner region is described by the Hertzian profile and that outside the inner region 
is uniform. This is based on the results of the exact numerical solution of Davis el al. 
(1986) who found that the deformation leads to a relatively planar inner region centred 
on the line of approach, which is very similar in form to a Hertzian deformation. The 
proposed Hertzian-like deformation leads to a simple closed-form analytical solution 
for the hydrodynamic viscous force. By using a scaling coefficient value of 0.25, which 
is equivalent to assuming that the elastic deformation outside the Herzian contact area 
is one quarter of that at centre, it has been demonstrated that the present analytical 
solution agrees well with the accurate numerical solution of Davis et al. (1986). 
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